
Informatik - Exercise Session
Pointers and Dynamic Data Structures

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a 1

1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a 1

b 2

1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a 1

b 2

x ↪→ a

1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a 1

b 2

x ↪→ a

y ↪→ x
1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a 1

b 2

x ↪→ a

y ↪→ a
1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a 1

b 2

x ↪→ a

y ↪→ a ↑ 2
1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a �1 2

b 2

x ↪→ a

y ↪→ a
1

Recap: References
What is the output of the following program?
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;
assert(a == b);
std::cout << a << " " << b << " " << x << " " << y << std::
endl;

Variable Values

a �1 2

b 2

x ↪→ a

y ↪→ a

And thus the output is: 2 2 2 2.

1

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)
3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:
1. as the arithmetic multiplication operator (e.g. z = x * y;)
2. to declare a pointer variable (e.g. int *ptr_a = &a;)
3. to access the content of a variable via its pointer (dereference operator) (e.g.

int a = *ptr_a;)

2

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)
3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:
1. as the arithmetic multiplication operator (e.g. z = x * y;)
2. to declare a pointer variable (e.g. int *ptr_a = &a;)
3. to access the content of a variable via its pointer (dereference operator) (e.g.

int a = *ptr_a;)

2

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)
Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)
2. to declare a pointer variable (e.g. int *ptr_a = &a;)
3. to access the content of a variable via its pointer (dereference operator) (e.g.

int a = *ptr_a;)

2

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)
3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:
1. as the arithmetic multiplication operator (e.g. z = x * y;)
2. to declare a pointer variable (e.g. int *ptr_a = &a;)
3. to access the content of a variable via its pointer (dereference operator) (e.g.

int a = *ptr_a;)

2

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)
3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)
2. to declare a pointer variable (e.g. int *ptr_a = &a;)
3. to access the content of a variable via its pointer (dereference operator) (e.g.

int a = *ptr_a;)

2

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)
3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:
1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)
3. to access the content of a variable via its pointer (dereference operator) (e.g.

int a = *ptr_a;)

2

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)
3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:
1. as the arithmetic multiplication operator (e.g. z = x * y;)
2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to access the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

2

Meanings of & and *
The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 different meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)
3. to access the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:
1. as the arithmetic multiplication operator (e.g. z = x * y;)
2. to declare a pointer variable (e.g. int *ptr_a = &a;)
3. to access the content of a variable via its pointer (dereference operator) (e.g.

int a = *ptr_a;)

2

Example: Pointers
What happens in this snippet?
int a = 5;
int* x = &a;
*x = 6;

Variable Values

3

Example: Pointers
What happens in this snippet?
int a = 5;
int* x = &a;
*x = 6;

Variable Values

3

Example: Pointers
What happens in this snippet?
int a = 5;
int* x = &a;
*x = 6;

Variable Values

a 5

3

Example: Pointers
What happens in this snippet?
int a = 5;
int* x = &a;
*x = 6;

Variable Values

a 5

x ↪→ a

3

Example: Pointers
What happens in this snippet?
int a = 5;
int* x = &a;
*x = 6;

Variable Values

a 5

x ↪→ a ↑ 6

3

Example: Pointers
What happens in this snippet?
int a = 5;
int* x = &a;
*x = 6;

Variable Values

a �5 6

x ↪→ a

3

this pointer
Consider the following struct:
struct WeirdNumber {

int number;

void increment_by(int number) {
(*this).number = (*this).number + number;

}
};

Whenever we implement a method (i.e. member function), the this pointer refers to
the object we are currently inside of. It is unique to each object and only available
inside methods.

4

this pointer
Consider the following struct:
struct WeirdNumber {

int number;

void increment_by(int number) {
(*this).number = (*this).number + number;

}
};

Whenever we implement a method (i.e. member function), the this pointer refers to
the object we are currently inside of. It is unique to each object and only available
inside methods.

4

Example: this pointer
An example with explanations:
#include <iostream>
int main() {

WeirdNumber a = {42};
WeirdNumber b = {-17};
a.increment_by(3); // 'this' in the call of the increment_by function

// refers to the object a
b.increment_by(2); // 'this' in the call of the increment_by function

// refers to the object b
std::cout << a.number << ' ' << b.number << std::endl;
return 0;

}

5

this->
To improve our notation with (*this).var, C++ introduces a convenient and
intuitive shorthand: this->var.

Another example: *(*(*(*ptr1).ptr2).ptr3).ptr4 becomes
ptr1->ptr2->ptr3->ptr4.

An improve version of the WeirdNumber struct:
struct WeirdNumber {

int number;

void increment_by(int number) {
this->number = this->number + number;

}
};

6

this->
To improve our notation with (*this).var, C++ introduces a convenient and
intuitive shorthand: this->var.

Another example: *(*(*(*ptr1).ptr2).ptr3).ptr4 becomes
ptr1->ptr2->ptr3->ptr4.

An improve version of the WeirdNumber struct:
struct WeirdNumber {

int number;

void increment_by(int number) {
this->number = this->number + number;

}
};

6

this->
To improve our notation with (*this).var, C++ introduces a convenient and
intuitive shorthand: this->var.

Another example: *(*(*(*ptr1).ptr2).ptr3).ptr4 becomes
ptr1->ptr2->ptr3->ptr4.

An improve version of the WeirdNumber struct:
struct WeirdNumber {

int number;

void increment_by(int number) {
this->number = this->number + number;

}
};

6

